
Coordinating Adaptations in Distributed Systems

Brian Ensink
ensink@cs.uiuc.edu

University of Illinois at Urbana-Champaign

Vikram Adve
vadve@cs.uiuc.edu

University of Illinois at Urbana-Champaign

1. Introduction
Applications in distributed and mobile environments re-

quire flexibility and robustness in the presence of ever
changing performance characteristics of the system. Many
applications use runtime adaptations to improve overall per-
formance. An application can adapt its behavior to make
the most effective use of limited resources [?, ?], or to im-
prove Quality of Service provided to the user [?, ?, ?], or to
adapt to changing performance conditions on systems and
networks such as in a Computational Grid [?].

Implementing adaptive distributed applications, li-
braries, or middleware can be a challenging technical and
software development problem. Adaptation strategies re-
quire addressing a number of difficult issues including
performance monitoring and prediction, adaptation mech-
anisms for changing the behavior of the code, resource
management and scheduling strategies for underlying sys-
tem resources, and coordination techniques for coordinat-
ing adaptations across multiple distributed processes. While
there has been a great deal of research on the first three as-
pects of adaptation (see Section??), there has been little
work that we know of that addresses the specific prob-
lem of coordinating adaptations. Middleware or libraries
that encapsulate adaptation behavior may hide this com-
plexity from the application, but have to face the same
challenges in their own implementation.

Coordination is critical to maintain the correctness of an
application during adaptation. In particular, adaptationin
a distributed application can require the affected processes
to communicate, synchronize, and perhaps schedule opera-
tions for the future. Such coordination requirements cause
two potentially important difficulties. First, explicit coor-
dination via inter-process communication and synchroniza-
tion can significantly increase the complexity of adaptation
in distributed programs. Second, reasonable manual imple-
mentations would typically use barriers or distributed locks,
but these mechanisms add overhead during normal (non-
adaptive) execution.

In this paper, we propose a novel strategy for coordinat-
ing adaptations in distributed applications that shifts much
of the burden to a sophisticated, transparent runtime algo-

rithm. The programmer uses simple directives to specify
criteria forwhen an adaptation must happen, as a function
of the relative computational progress of the affected pro-
cesses (without having to write any explicit communication
or synchronization code). The adaptation is then scheduled
automatically and efficiently by a compiler and runtime sys-
tem. We develop a sophisticated runtime algorithm that co-
ordinates and schedules the adaptation operationslocally
and asynchronouslyon the different processes, as specified
by the program criteria (using simple compiler support to
track the progress of the processes).

We evaluate the performance overheads of runtime co-
ordination for two programs: a parallel PDE solver imple-
menting the ghostzones adaptation from Cactus-G [?] and a
file-transfer program implementing key adaptations from a
distributed video server and video tracking code [?]. Our
results show that the overheads of the runtime coordina-
tion are small or negligible, less than 1% in all cases. The
key to this performance is the novel asynchronous execu-
tion achieved by our runtime coordination algorithm.

Our compiler and runtime support for coordination have
been implemented in the context of Program Control Lan-
guage (PCL), a high-level language for specifying adapta-
tions within a distributed application. This choice isnotfun-
damental to this work: the coordination rules could be spec-
ified and implemented even if PCL was not used to im-
plement adaptations. The coordination rules rely on iden-
tifying control flow regions within the target program, and
on tracking the relative execution progress of different pro-
cesses with respect to instances of these regions.

The next section provides some necessary background
on PCL. The subsequent sections describe the language
constructs (Section??), the compiler support and runtime
algorithm (Section??), our experimental evaluation (Sec-
tion ??) and a discussion of related work (Section??). Sec-
tion ?? concludes by summarizing our contributions.

2. Background: Static Task Graph and PCL
In this section, we provide a brief description of our

adaptive framework and an implementation of it called Pro-
gram Control Language (PCL). PCL and the framework are
described in more detail in [?]. That work described how

PCL could be used to perform remote adaptation opera-
tions automatically, but hadno support for automatically
coordinating adaptation operations occurring on multiple
processes. In this paper, we build upon our previous work
by developing a transparent coordination strategy that can
be used with PCL or with other methods for implementing
adaptive distributed programs.
2.1. The Static Task Graph (STG)

TheStatic Task Graphof an application (STG) provides
a global view of the control flow of a distributed applica-
tion. Conceptually the behavior of the application can be al-
tered by changing the graph.

Def. (task): A task in a distributed program is a single-
entry, single-exit section of code executed by a single
thread and containing no synchronization operations.

Def. (static task graph): A static task graph(STG) is a di-
rected graph in which each node represents a task and
an edge fromT1 to T2 impliesT1 must complete be-
foreT2 can begin.

Note that a task is a static entity; logically, one or more
instancesof each task are created and executed at runtime,
possibly by different threads. A static task graph is similar
to a control-flow graph, but for a distributed program. A task
may include multiple basic blocks of the control flow graph.
This is useful because coarse-grain tasks are often sufficient
for representing the relevant aspects of distributed program
behavior. Tasks can be eithercomputation, synchronization
or communication tasks, where the latter represent instruc-
tions executed for explicit interprocess communication.

Edges can represent control flow, synchronization, or
both. In particular,an instance of the edgeT1 → T2 con-
nects a pair of task instances, one each ofT1 andT2. This
edge instance represents ordinary control-flow if the two
task instances are executed by the same thread, and repre-
sents an synchronization operation otherwise.

The static task graph abstraction of an application need
not be explicitly constructed during development (in fact,no
STG representation is directly used by the language, com-
piler or runtime system). The only necessary requirement
is for the programmer to understand the control flow of the
program around regions of the code whose behavior is di-
rectly modified by adaptation operations, in order to specify
“entry points” into those regions. (In PCL, these regions in-
clude the tasks that are added, removed, or have parameters
modified by an adaptation).
2.2. Basic Language Constructs in PCL

The adaptation constructs in PCL are operations that
modify program behavior by conceptually modifying the
program’s STG. Figure?? presents a subset of PCL. We
briefly introduce the key constructs in PCL in order to ex-
plain the coordination strategy and its implementation in
PCL completely.

The user places apcl AdaptSite directive in the
code to name a location in the STG where tasks can be in-
serted and removed. The name of the adapt site must be
unique and is used by those PCL directives which insert or
delete tasks. A task is identified either by a function name
(the task is the entire function) or by a label identifying a
structured program scope. (The current version of PCL only
supports complete functions as tasks.) No other information
about the task graph is needed.

pcl_AdaptSite(<name>, <arg-list>);
pcl_AddTask(<adaptsite>, <task>, <P> [, <cid>]);
pcl_RemoveTask(<adaptsite>, <task>, <P> [, <cid>]);
pcl_ReplaceTask(<adaptsite>, <old-task>, <new-task>,

<P> [, <cid>]);
pcl_ChangeParameter(<name>, <new-value>, <P>);
pcl_AdaptMethod(<function>);
pcl_AsyncCall(<adapt-method>, <arg-list>);

Figure 1. Key Operations of PCL

Task graph operations includepcl AddTask ,
pcl RemoveTask , and pcl ReplaceTask to in-
sert, delete, or replace a task at an adapt site in the STG.
Each operation takes arguments that name the adapt
site and the task(s) needed by the operation. In addi-
tion, each specifies the process where the operation should
be executed. Thepcl ChangeParameter directive al-
lows the user to change the value of acontrol parameter
on a target processP . A control parameter is other-
wise an ordinary variable, so it can be used in program
control flow to change program behavior without modify-
ing the task graph.

In [?] we show that executing the adapt logic asynch-
ronously significantly decreases the overhead of using
PCL. The user writes all adapt logic in one or more sep-
arate functions and uses thepcl AdaptMethod di-
rective to indicate the function contains adapt logic. Fi-
nally, the user invokes the adapt method asynchronously
with the pcl AsyncCall directive, supplying an argu-
ment list to be passed to the adapt method.

3. Specifying Coordination
Requirements in PCL

Many distributed applications use coordination tech-
niques to coordinate and protect access to critical re-
sources or data. This synchronization between processes
may be implied by message send and receive opera-
tions, or may be done explicitly using distributed locks and
barriers. Writing adaptive logic for such applications re-
quires careful consideration of the implicit and explicit
synchronization to avoid introducing errors.

3.1. A Motivating Example
Consider a simple streaming-video client and server ap-

plication that supports multiple video formats. A small por-
tion of the task graph of this application is shown in Fig-
ure ??. Either the server or the client can monitor network

conditions and change video formats to maintain some de-
sired QoS metric (e.g., frame rate) as network conditions
change. The encode/send and recv/decode operations de-

Recv &
decode
Type A

Display
Frame

Send
Frame
Type A

Server Client

AS1 AS2
R1

Figure 2. Partial STG of a streaming video ap-
plication. The shaded area is region R1.

pend on the current frame format which can be changed
by replacing these two tasks. The adapt sitesAS1 and
AS2 mark the location of tasks that will be replaced by
the adaptation. Initially, there is a task at each adapt site
to encode and decode frames in format “A” as indicated in
the figure. A single format adaptation would involve two
pcl ReplaceTask() operations, one at each adapt site
AS1 andAS2. A PCL code fragment for this is given and
discussed in Section?? and Figure??.

Switching the video format, regardless of whether it is
performed with PCL, requires some coordination. The com-
munication channel may contain several frames and partial
frames in transit over the network. There are two require-
ments for synchronizing the adaptation. First, both client
and server should switch formats prior to the same frame.
Second, neither switch should take place while an encode-
send task or receive-decode task is in execution.

A simple manual implementation might synchronize the
two processes, wait for the channel to empty out, and then
switch formats in both processes in synchrony. Note, how-
ever, that this synchronization is not strictly necessary;
it is sufficient to ensure thenumber of instances of the
send task whenpcl ReplaceTask() is performed at
the server matches thenumber of receive instanceswhen
pcl ReplaceTask() is performed at the client. The two
counts might reach the same value at different points in
time. The second (“internal”) requirement above is met by
performing the adaptation before entering the encode task
or the corresponding decode task.

Similarly, Section?? describes an adaptation of the num-
ber of ghostzones in a parallel PDE solver. This adaptation
requires that two neighbors perform their respective parts
of an adaptation before the same iteration of the time-step
loop.

More generally, we find that adaptation operations be-
tween a set of processes typically require some condition
that tracks the relative progress of the processes involved.
A generalization of the examples described above would be
that each participating process has reached some point in
its execution relative to the initiating process and/or other

participating processes. As a simple example, one might re-
quire that the number of instances of two tasksT1 andT2

executed by two different processes, might be related as
NT1

≥ NT2
. In practice, we have found that the simple

rule of the formNT1
= NT2

(as in the two examples above)
arises most commonly. This simple rule states that all par-
ticipating processes are at thesamelogical point within a
distributed computation.

Defining these coordination criteria more formally re-
quires some notion of the set of tasks that are affected by
the adaptation (such as the pair of encode-send and receive-
decode tasks above). These tasks usually will be executed
by multiple processes, each of which may have different en-
try and exit points to the tasks. The next section defines the
notion of atask graph regionthat captures the execution be-
havior of a set of tasks. We use regions to enable the pro-
grammer to specify coordination policies that can be imple-
mented by the compiler and runtime system.

3.2. Regions and Execution Progress
Def. (region): A region of the static task graph is a sub-

graph induced by an arbitrary set of tasks{T1,. . ., Tr},
with the sole restriction that a thread cannot be created
or destroyed within the region (i.e., due to the execu-
tion of any of the tasks in the region).

Def. (region-in edge): For a regionR, a region-inedge is
an edgea → b such thata /∈ R andb ∈ R.

Def. (region-out edge): For a regionR, a region-outedge
is an edgeb → c such thatb ∈ R andc /∈ R.

A region may include one or more tasks, and may have
one or more region-in and region-out edges. For example,
the region labelled “R1” in Fig.?? has two region-in edges
(executed by different processes in this case) and similarly
two region-out edges.

In order to express correctness criteria in terms of the
progress of tasks in the distributed program, we define the
following:

Def. (region instance): A threadt begins a new region in-
stance when flow of control of the thread crosses a
region-in edge. The region instance completes when
flow of control crosses aregion-outedge.

Def. (region count): For a regionR and threadt, the re-
gion countNR(t) is the number of region instances
that have been completed by threadt.

Def. (active region): A regionR is active in threadt at a
particular instant if threadt is executing some task in
the regionR at that instant. We also refer to this as an
active instance of regionR.

3.3. Scheduling Semantics
With our language support, the programmer can specify

synchronization requirements such as those for the video-

server application via simple high-level declarations,with-
out the complexity, overhead, and maintenance costs of pro-
gramming the necessary synchronization behavior explic-
itly into the distributed application.

We begin by defining a few key terms. Alogical adap-
tation (or simply, an “adaptation”) is a set of adaptation op-
erations that must be coordinated to perform some adaptive
change (if using PCL, these are task graph operations listed
in Figure??). We assume that the coordination of adapta-
tion must be done relative to some region of the task graph,
R; in every case, we have foundR to be a small set of tasks
affected directly by the adaptation. We define thepartici-
pating processesas all the processes that must perform one
of the operations in the adaptation. We assume that one pro-
cess explicitly initiates an adaptation; referred to as theorig-
inating process. The originating process may also be a par-
ticipating process.

Fundamentally, coordinating a distributed adapta-
tion comes down to a scheduling decision of when to ex-
ecute the adaptation on each participating processPj .
There are two main aspects which influence this deci-
sion: the internal stateof Pj in terms of regionR, and
the external stateof Pj relative to other participating pro-
cessesPi6=j .

The internal constraint:The correctness of the target ap-
plication may depend on whether the region is active or in-
active on each processPj . The user must decide how this
relationship constrains the scheduling decision. The adap-
tation can be performed using one of four rules:

Choices for Internal Policy:
Any : At any time
RegionIn : At a region-in edge
RegionOut : At a region-out edge
OutsideRegion : When the region is inactive

One of these four policies will be specified as part of an
adapt operation or group of operations, as described in Sec-
tion ??.

The external constraint: This constraint is used to spec-
ify requirements on the relative state of different participat-
ing processes. In the most general case, a scheduling pol-
icy can be a function that takes as input a set ofN pairs
specifying the participating processes and the region count
on each:In = {(P1, NR(P1)), . . . , (PN , NR(PN))}. The
function returns a set of region count values indicating
when the adaptation should be executed on each process:
Out = {T1, . . . , TN)}. This function is executed at run-
time and can refer to internal program state.

In practice, as noted earlier, we have found only two poli-
cies to be needed, and we provide simple keywords that can
be used to specify these:

Built-in Choices for External Policy:
Any : at any time, indepen-

dent of region counts.
EqualRegionCounters : the smallest common

region count that can
be reached on all pro-
cesses.

The algorithm implementing the EqualRegionCounters pol-
icy simply sets everyTi to bemax1≤j≤N NR(Pj).
3.4. Composite Operations (COPs)

A coordination policy specifies internal and external
constraints for someset of adaptation operations. The set
as a whole is treated as a single logical adaptation. In or-
der to specify such a set and its coordination requirements,
we introduce a language construct to PCL called aCompos-
ite Operationor COP.

A composite operationC consists of one or more com-
ponent operationsopi. Our implementation uses PCL so
each component operation can be any of the adapt opera-
tions shown in Figure??. Each component operationopi

has a process identifierPi indicating the target participat-
ing process of the operation. There are no restrictions on
the number of participating processes in a single compos-
ite operation.

The list of composite operations begins and ends with
calls to two new PCL built-in functions:

int pcl OpenComposite(void);
int pcl CloseComposite(int CID,
InternalPolicy IP, ExternalPolicy EP,
char * RegionName).

The process that executes the composite operation
is the originating process. As shown above, the co-
ordination criteria are specified as arguments to the
pcl CloseComposite() function. InternalPol-
icy and ExternalPolicy are PCL-defined enumeration
types that take the values listed in the previous sec-
tion.

int C; / * composite operation id * /
...

1 C = pcl_OpenComposite();
2 pcl_ReplaceTask("AS1", "sendTypeA", "sendTypeB", Ps, C);
3 pcl_ReplaceTask("AS2", "recvTypeA", "recvTypeB", Pc, C);
4 if (pcl_CloseComposite(C, BeforeRegion,

EqualRegionCounters, "RGN1"))
5 ... // handle error condition

Figure 3. Example of a Combined Operation
with Coordination Criteria

4. Compiler and Runtime Support
The key to the coordination mechanisms introduced in

section?? is a novel synchronization algorithm which uses
simple compiler support to perform adaptation operations
on each participating process at the appropriate logical time.
We discuss the compiler and runtime support below.

4.1. Compiler Support
We extended our PCL compiler to support composite

operations and coordination. The PCL compiler is imple-
mented using the LLVM compiler infrastructure [?]. PCL
compiler operates as a source-to-C compiler, and can sup-
port any source language compiled to the LLVM intermedi-
ate representation. The PCL language directives are repre-
sented as ordinary function calls within the input program.
The PCL compiler replaces each PCL directive with code
(primarily sequences of runtime library invocations) to im-
plement the directive.

The compiler inserts the code of Figure?? along each
RegionIn edge. This is the key step that requires a true com-
piler rather than a simple preprocessor, since this step re-
quires correlating information from directives placed
far apart in the code, namely, thepcl AdaptSite() ,
pcl Region , and pcl CloseComposite() direc-
tives. The inserted code serves three purposes. First,
lines 1-2 will block if a COP is in the process of be-
ing scheduled but is not yet committed. Second, line 3 in-
crements the region countNRGN1(P). Finally, lines 4-5
will call a runtime function that will execute any adap-
tations that have been scheduled for the current value of
NRGN1(P). These operations are described in more de-
tail below. This compiler transformation is straight forward
and requires no expensive analysis.

1: while (RGN1_submitCounter > 0)
2: RegionWait(RGN1);;
3: ++RGN1_regionCounter;
4: if (RGN1_pendingCounter > 0)
5: CommitAnyPending();

Figure 4. Compiler generated code for a Region-
In edge of region RGN1

4.2. Runtime Support
The PCL runtime library uses CORBA [?] to commu-

nicate with the respective runtime libraries of other pro-
cesses. The use of CORBA simplified the implementation,
and the communication overhead of CORBA is not a sig-
nificant concern (as our experimental results demonstrate).
Each process is given a unique numberPi used for inter-
process communication. The runtime library makes use of
a thread to asynchronously execute adapt logic and an ad-
ditional thread to run CORBA1. This prevents incoming
and outgoing remote method invocations from interfering
with the asynchronous execution of the adapt logic. We use
RTLi to refer to the runtime library thread associated with
processPi.

1 CORBA may internally create additional threads to handle incoming
and outgoing remote method invocations.

The internal and externalAny adaptation policies are
easy to support. The runtime system at the originating pro-
cess sends the composite operation to each participating
process, which executes it immediately, regardless of its lo-
cal state or that of other processes.

The remainder of this section first focuses on the
EqualRegionCounters policy for external coordi-
nation in conjunction with theRegionIn policy. We
then discuss how the algorithm changes for the other poli-
cies. All the algorithms below assume reliable message
delivery, which is possible with CORBA.

4.2.1. Runtime Support on the Originator Suppose the
originating site executes the code of Figure?? to create the
composite operationC on regionRGN1. This distributed
adaptation has two component operations:op1 which re-
places a task on the server processPs andop2 which re-
places a task on the client processPc. In this discussion we
refer to the originating process asS and any participating
process asPi. (Note thatS could be eitherPs, Pc or some
other process.)

The key insight in the coordination algorithm is recog-
nizing that an adaptation which modifies multiple processes
need not occur at the same wall clock time, but only at the
specified logical time on each process. Even if the logical
times are equal (e.g., for theEqualRegionCounters
policy), they may occur out of phase due to load imbalance
or network latency. Nevertheless, they can be scheduled cor-
rectly as long as they specify a future logical time ofall in-
volved processes. (This property must be preserved by the
scheduling function, e.g., by the use ofmax1≤j≤N NR(Pj)
for EqualRegionCounters). The adaptation operation
on each process can be executed locally at the scheduled
time. The region count mechanism records the logical pro-
gression of time.

The pseudo-code which executes when a composite op-
eration closes is shown in Figure??. The originating site
performs three main steps shown in Figure??. AssumePs

is the originator. First, it sendsC to all participating pro-
cesses, i.e., toPs andPc.

After sendingC, the originating process waits for a re-
ply containing the region count from each participant. The

Participating
node

submit cop

region instance

commit

ack

new region
instance
blocked

(1)
(2)

(3)
(4)

(5)

Originating
node

Figure 5. Messages sent between the originating
site and each participating site

originating process builds a set of (process, region-count)
pairs. In this example, the set would be:

{(Ps, NRGN1(Ps)), (Pc, NRGN1(Pc))}

When all replies have been received,S calls the scheduling
algorithm passing it the region counts. The algorithm re-
turns another set{Ts, Tc} which indicates the region-count
time when each participating process must execute the com-
posite operation, whereTi > NRGN1(Pi).

Finally, the originating process mustcommitthe adapta-
tion on each participating processPi by sendingTi to each
process. Each participating process replies with anack and
after allack s have been received the composite operation
is committed, although the component operations may not
have been executed yet on their target processes.

The key to the correctness of this algorithm is the as-
sumption that the input region count values for each par-
ticipating site will continue to be valid from the time they
are first sent until the adaptation is committed (i.e., between
points (2) and (4) in Figure??. This ensures that no partic-
ipating site will begin a new region instance until after the
composite operation has been committed, although it can
execute other unrelated code. This is guaranteed by the run-
time system on each participating process, as follows.

CloseCompositeOp(COPC)
∀ ParticipatorsPi ∈ C

invokeSubmitCompositeOp(C) onPi

∀ ParticipatorsPi ∈ C

recvNR(Pi) from Pi

In = In ∪ (Pi, NR(Pi))
Out = ScheduleAlgorithm(In)
∀ Ti ∈ Out

invokeScheduleCompositeOp(C, Ti) onPi

∀ ParticipatorsPi ∈ C

recv ACK fromPi

SubmitCompositeOp(COPC)
R = Region(C)
++ submitCounterR

submitList . add(C)
S = originator(C)
sendNR(Pthis) to S

ScheduleCompositeOp(COPC, int Ti)
R = Region(C)
submitListR . remove(C)
pendingListR . add(C)
++ pendingCounterR

–submitCounterR

if submitCounterR == 0
notify(R)

Figure 6. Coordination Algorithm. For sim-
plicity, the timeout logic for ACKs is omitted

4.2.2. Runtime Support on Participators The RTL on
each participant is responsible for two things. First, it must
guarantee the originator’s assumption that no new region in-
stance is entered from the time it reads the region instance
counter until the adaptation is committed. Second it must
execute the committed adaptation locally according to the
schedule specified by the originator.

At point (2) in Figure?? the participantPi has received a
composite operationC for regionRGN1. The runtime sys-

tem increments asubmit counterwhich counts how many
composite operations have been received but not yet com-
mitted, and putsC on thesubmit list which temporarily
holds COPs until they are committed.Pi then reads the re-
gion countNRGN1(Pi) and sends it to the originating pro-
cessS. The execution of the target application on the par-
ticipant is allowed to continue unless it attempts to enter a
new region instance.

Pi performs the steps shown in Figure?? when it re-
ceives a commit message (point (4) in Figure??) for region
countTi from the originator. If the target application had
been blocked because it attempted to enter a region it will
be notified and allowed to continue. If it was not blocked it
will continue without any knowledge of the new compos-
ite operation or any of the steps taken to commit it at time
Ti.

After the PCL runtime onPi schedulesC, the adapta-
tion will be executed at timeTi. The code of Figure?? exe-
cutes any pending composite adaptations for the current re-
gion count, at each Region-In edge. When an operationC
is removed from the pending list it is executed locally.

This combination of distributed scheduling and local ex-
ecution allows a complex distributed adaptation to be coor-
dinated without the use of expensive barriers and distributed
locks. The video server could even send all frames, schedul-
ing adaptations on itself and the client and performing adap-
tations locally, and then exit before the client receives a
single frame. When the client begins receiving frames it
will execute each adaptation locally at the scheduled region
count time and all frames will be received correctly.

4.2.3. Other policies The discussion above focused on
theEqualRegionCounters andRegionIn policies.
TheRegionOut policy will execute the adaptation on a
region-out edge of the region, which can be implemented
in the same way as ourRegionIn policy. TheOutside
policy indicates the adaptation should be performed when
some regionR is not active. Implementing this would re-
quire a mutex for each region, which is locked along every
region-in edge and unlocked along every region-out edge
on each process. The mutex would be acquired before exe-
cuting the adaptation. This is more expensive than our cur-
rent implementation of theRegionIn policy, but we have
not found applications where it is strictly necessary.

A longer version of the current paper [?] discusses
other key algorithmic issues, including why the algo-
rithm is deadlock-free, why a centralized originating
process is unlikely to be a significant bottleneck, and the ef-
fect of network latency.

5. Experience and Results
In this section we first discuss our experience with im-

plementing two distributed adaptations using the coordina-
tion strategy described here, and then present experimental

results for the overhead and scalability of our coordination
algorithm.

5.1. Applications
One of the challenges in the topic addressed here is that,

to our knowledge, there are no realistic adaptive distributed
applications in the public domain, even though several have
been mentioned in the literature (e.g., [?, ?, ?, ?]). To sup-
port our research, we wrote simple but representative ver-
sions of two adaptive codes that capture key adaptation be-
havior in real codes. One is a simple PDE solver with a dis-
tributed ghostzone adaptation similar to CactusG [?]. The
second is a model video tracker in C with similar adapta-
tions to those in the video tracking code. Due to space lim-
itations we only briefly describe these two applications. A
more complete description can be found in [?].

5.1.1. PDE solver We have implemented a simple PDE
solver with adaptive ghostzones, similar to [?]. We used a
one dimensional decomposition to simplify the paralleliza-
tion of the problem, but this does not reduce the complexi-
ties of distributed coordination.

Ghostzones are used in domain-decomposition-based
PDE solvers to hide network latencies by replacing many
smaller messages by fewer but larger messages, but at the
cost of some redundant computation. If there areG ghost-
zones on the boundary then each pair of adjacent processes
will have to exchangeG rows of data everyG iterations,
and each process performsG − 1 rows of redundant com-
putation at each boundary. The ghostzones adaptation
changes the value ofG at a particular boundary, to main-
tain computational efficiency under varying network con-
ditions. Coordination is required so that any change toG
occurs at the same logical time step on any pair of adja-
cent processes.

extern void Adapt(...);
pcl_AdaptMethod(Adapt);
pcl_ControlParameter("NewGZSize");
...
while (/* continue */) {

1 pcl_Region("RGN1");
2 pcl_AdaptSite("AS1", ... /* args */);
3 /* update ghostzones if necessary */
4 /* compute matrix */
5 if (nIterations \% ADAPT_PERIOD)
6 pcl_AsyncCall(Adapt, ... /* args */);

}

void Adapt(...) { ...
10 C = pcl_OpenComposite();
11 pcl_ChangeParameter("NewGZSize", gSize, C);
12 pcl_ChangeParameter("NewGZSize", gSize, rank-1, C);
13 pcl_AddTask("AS1", "ChangeAboveGhostsize", C);
14 pcl_AddTask("AS1", "ChangeBelowGhostsize", rank-1, C);
15 pcl_CloseComposite(C,

BeforeRegion, EqualRegionCounters, "RGN1");
}
Figure 7. PCL code fragment for PDE solver

C = pcl_OpenComposite();
if (/* add compression */) {

pcl_AddTask("AS1", "CompressBlock", C);
for (/* each client dest */)

pcl_AddTask("AS2", "DecompressBlock", dest, C);
}
else if (/* remove compression */) {

pcl_RemoveTask("AS1", "CompressBlock", C);
for (/* each client dest */)

pcl_RemoveTask("AS2", "DecompressBlock", dest, C);
}
pcl_CloseComposite(C, BeforeRegion,

EqualRegionCounters, "RGN1");

Figure 8. PCL code fragment for video server

Adding the ghostzone adaptation only required writing
code to update the solver data structures (which must be
written regardless of how adpatation is implemented or co-
ordinated), plus a small amount of PCL code, shown in Fig-
ure ??. Briefly, the adapt method in this PCL code exam-
ines performance metrics (not shown) and may issue the
composite adaptation operation shown. Each process mon-
itors performance and adapts the ghostzone size at only
one of its two boundaries to avoid competing adaptations.
The composite operation changes the control parameter
NewGZSize on both participating processes and then in-
serts a task which will read the new value of the control pa-
rameter and change the data structures of the PDE solver.

In the absence of our language support for coordination
the user would have to use primitive distributed coordina-
tion methods such as a barrier. Such a barrier would need to
be passed ateverytimestep rather than only those timesteps
when an adaptation is scheduled.

5.1.2. Distributed Video Tracking Model In a dis-
tributed video tracking application [?], a video server sends
a stream of individual image files to each client. The files
may be raw or compressed depending on the CPU and net-
work load at the server to each client. This was the example
we used in the language and algorithm sections?? and??
and a partial taskgraph of this application is shown in Fig-
ure??.

Each client must be informed when the server switches
compression. Coordination is required to prevent the client
from incorrectly interpreting the data. The distributed co-
ordination support of PCL allows the adaptation to happen
without adding any additional meta-data to the data stream
to notify the client, or writing explicit messages to do so.
Rather, the runtime system handles all the necessary coor-
dination to prepare each client to receive the correct frame
type when the server adapts.

The code fragment in Figure?? is part of the server’s
adapt method which decides whether it should start send-
ing compressed or raw data. The code fragment will add a
component operation toC to add or remove the appropri-
ate task for every client destination.

5.2. Experiments
Two aspects of our algorithm are important to evaluate:

the overhead introduced by the coordination algorithm and
the scalability of the algorithm as the number of participat-
ing processes grows.

To perform our experiments we ran two versions of each
of the above applications. The first version had adaptation
disabled. The second version used a fixed sequence of adap-
tations but these adaptations did not actually change pro-
gram behavior, so that the only difference compared with
the first version would be the overheads of the adaptation.
(The PDE solver always used the same ghostzone size of 1
and the video server always used raw blocks). The full cost
of coordinating and executing the composite operation is in-
curred in every case. All numbers are the average of three
runs.

Each measurement of the PDE solver is for 500 itera-
tions on a square matrix with 10,000 rows and columns par-
titioned among the processors. The adaptive version issued
an adaptation every 20 iterations. The video server sent a
“video” consisting of 12,000 frames of about 8K each, and
sustained a rate of about 25 frames per second. The adap-
tive version issued an adaptation every 100 frames, or ev-
ery 4 seconds. The frequency of adaptation in both appli-
cations is higher than is likely in production environments,
further increasing the observed overhead.

All of our measurements were performed on a number of
Sun Ultra-10 and Sun-Blade-1000 workstations connected
by a 100Mbps LAN throughout our department.

5.2.1. Overhead The coordination algorithm introduces
overhead into the distributed application in two different
ways. First, the adapt method is invoked asynchronously in
both programs by a separate thread. This thread and the ap-
plication thread compete for CPU time. Second, each par-
ticipating processmaybe blocked by the runtime system for
a short time before the adaptation is committed.

Figure?? shows the execution times and percent over-
head of each program. The overhead is lower than 1% in all
cases. The overhead is very low for several reasons. First,
the adapt logic on the originating process is executed asyn-
chronously to the base application which allows the appli-
cation to continue forward progress. Second, costly network
messages are requiredonly when an adaptation is needed
and not also in the steady state. Finally, the region code of
Figure ?? will only block the base application if a com-
posite operation is being scheduledand the application at-
tempts to enter the region. If the application is not currently
executing this part of the code then the application will not
be blocked during scheduling.5.2.2. Scalability We used the video server program to
evaluate scalability since its adaptation involvesN pro-
cesses. We variedN and measured the execution time of
the coordination algorithm, using theBeforeRegion ,

Number of Nodes
7 14 21

PDE solver no adaptations 937.73 387.16 262.24
adaptive 939.56 387.96 264.18
overhead 0.20% 0.21% 0.74%

adapt. period 37.6 15.5 10.5

File Copy no adaptations 481.26 481.64 482.32
adaptive 482.10 483.38 482.73
overhead 0.18% 0.36% 0.07%

Figure 9. Overhead measurements (seconds)

EqualRegionCounters policy. (Using a differ-
ent scheduling policy discussed in?? will not significantly
change the scalability results because each algorithm exe-
cutes on a single processor and compares onlyN numbers.
The bulk of the execution time of the algorithm re-
sults from network messages.)

Figure ?? shows the average time to execute the coor-
dination algorithm withN participating processes. The av-
erage execution time of the coordination algorithm for the
PDE solver was 0.093 seconds. As the figure shows, the
coordination algorithm appears to scale very well although
there is a somewhat high fixed cost. This indicates the fixed
cost is almost all network latency, not CPU overhead.

number of clients (+1 for number of participating sites)
6 13 20 30 40 50 60 70 80

0.11 0.12 0.12 0.15 0.14 0.13 0.10 0.12 0.12

Figure 10. Scalability measurements, all
times in seconds (bottom row)

Overall, the experimental results show that using our al-
gorithm for coordinating distributed adaptations is both ef-
ficient and scalable.

6. Related Work
There have been a number of programming languages

aimed at simplifying different aspects of distributed com-
puting, e.g., Lynx [?], Emerald [?] and SR [?]. Some lan-
guages such as Strand [?] expose a mix of standard synchro-
nization and shared memory mechanisms as language con-
structs. There have also been specific language mechanisms
such as Java RMI and standard middleware systems such as
CORBA [?], DCOM [?] and Java Beans. All these systems
primarily focus on high-level mechanisms for remote com-
munication, resource management, and scheduling. We are
not aware of a programming language that specifically fo-
cuses on enabling runtime adaptation in either sequential or
distributed programs.

Researchers at BBN Systems have developed powerful
middleware for reliable and adaptive distributed systems.
Their platforms include distributed coordination and syn-
chronization techniques for resource management and shar-
ing in the presence of QoS constraints [?, ?] and for co-
ordinating and scheduling real time systems [?]. To our
knowledge, however, none of the work proposes specific
support for coordinating distributed adaptations from high-
level specifications, which has been the focus of this pa-
per. Our algorithm could be useful not just at the applica-
tion level but also for implementing coordination require-
ments within their middleware.

Chen et al. [?] describe a system for runtime adapta-
tion where coordination is based on identifying message
flows through an adaptive component. An adaptation re-
places an old algorithm module with a new one and occurs
in three steps: Preparation, Outgoing Switchover, and In-
coming Switchover. A global barrier is needed after the first
step to ensure that all adaptive components are ready to re-
ceive new messages. The PCL coordination approach re-
quires no such barrier because adaptations are scheduled for
a future agreed-upon time for all adaptive components.

Workflakes [?] is an externalized dynamic adaptation
platform that works by superimposing a performance feed-
back loop onto an existing distributed system. Workflakes
performs adaptations externally and at the process level, and
the system does not provide specific features for adding per-
formance monitoring or adaptation “effector” mechanisms
(these must already exist in the target application). The sys-
tem provides sophisticated mechanisms programmers can
use to control the operations of the effector mechanisms,
but does not automate this process — it must be specified
manually by the programmer.

A number of other middleware and runtime systems also
support dynamic adaptation [?, ?], many for specific goals
such as Quality-of-Service in distributed network applica-
tions [?, ?, ?], fault-tolerant distributed systems [?], mo-
bile applications [?, ?], and distributed scientific applica-
tions [?, ?, ?]. Because these systems share some of the
goals of PCL (in terms of simplifying adaptive distributed
applications), and they are described and compared with
PCL in [?]. To our knowledge, these systems do not auto-
mate the task of coordinating adaptation operations on mul-
tiple processes; this coordination must be explicitly man-
aged by the programmer.

There are sophisticated distributed algorithms for a wide
range of distributed coordination problems, including mu-
tual exclusion, logical time and logical clocks, global snap-
shots, distributed consensus, and concurrency control. The
concepts of logical time and global snapshots on the sur-
face appear related to our language mechanisms for speci-
fying a correct logical state in which adaptation should oc-
cur. In fact, however, all of those concepts rely on commu-

nication events in a distributed computation to identify the
progress and ordering of events across processes. In con-
trast, regions and region counts are purely local properties
within each process or thread, and are not defined in terms
of communication operations. Our runtime algorithm for
scheduling adaptation operations is closer to some of the al-
gorithms mentioned above. Our algorithm is relatively sim-
ple and uses centralized decision making at the initiating
site because, in practice, we expect each logical adaptation
to involve a relatively small number of processes. Never-
theless, some of the techniques in existing algorithms (such
as those for distributed consensus or leader election) could
be used to implement more sophisticated synchronization
strategies, particularly in the presence of unreliable com-
munication or node or process failures.

7. Conclusion
In this paper we presented language mechanisms, com-

piler support, and a novel runtime algorithm for coordinat-
ing adaptations in distributed applications. The languagedi-
rectives allow programmers to specify coordination require-
ments in simple high-level terms, without explicit commu-
nication or synchronization. Our runtime algorithm sched-
ules the adaptation operations to be executed locally and
asynchronously (using logical times based on computa-
tional progress rather than application messages), relying on
simple compiler support to track computational progress.

The main limitation of our approach is that it focuses
on coordination rules based on the relative flow of execu-
tion of different processes. In future work, it would be in-
teresting to extend the approach to other potential coordi-
nation requirements. Within these limitations, however, our
approach has several advantages. First the coordination re-
quirements can be expressed by a single process, indepen-
dent of the actual processes where the actual adaptations
occur. Second, the expense of coordination is incurred only
when needed, rather than continuously as would be the case
with barriers or distributed locks. Furthermore when coor-
dination is required for an adaptation the overhead is mini-
mal, and the algorithm is very scalable. Third, the runtime
library implements all remote communication to schedule
and execute the adaptation, sparing the user from the dif-
ficulties of writing another level of communication specifi-
cally for coordinating adaptations.

