
The Relationship between Bernoulli and Fixed Feedback Policiesfor the M/G/1 QueueVikram S. AdveComputer Science DepartmentUniversity of Wisconsin-MadisonMadison, WI 53706 Randolph NelsonIBM Research DivisionT.J. Watson Research CenterP.O. Box 704Yorktown Heights, NY 10598AbstractWe consider an M/G/1 queue with feedback, in which customers, after receiving service,either return to the tail of the queue or depart the system, according to some feedbackpolicy. We derive simple expressions for the expected response time for feedback policiesthat include Bernoulli feedback and feeding back a �xed number of times. Our results revealsome interesting and non-intuitive properties of the behavior of such feedback policies whenthe coe�cient of variation of service time is varied. One result shows that for the Bernoullifeedback and �xed feedback policies with equal mean number of visits to the queue, theexpected response time for the Bernoulli policy is smaller than for the �xed policy if thecoe�cient of variation of service time is greater than 1. The relationship reverses if thecoe�cient of variation is less than 1.
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We consider a queueing model consisting of a single server queue having in�nite capacity.We assume that customer arrivals come from a Poisson point source with intensity �. Customerservice times at the queues are independent and identically distributed random variables (r.v.'s).We let Xi be the r.v. denoting the service time of a customer on its ith visit, and we denotethe mean, variance and squared coe�cient of variation of Xi by xi, �2xi , and C2xi � �2Xi=x2i ,respectively. After the ith service completion, a customer returns to the tail of the queuewith probability qi and leaves the system with probability (1 � qi), i � 1. Customers in thequeue, both newly arrived and those that are fed back, are served in the order in which theyjoined the tail of the queue. The customer response time is de�ned to be the duration oftime from customer arrival until departure including all intermediate feedbacks. An analysisof a more general model can be found in [Nelson 1987] and, more recently, in [van den Berg1990]. Tak�acs [Tak�acs 1963] also derives the queue length distribution for the M/G/1 queuewith Bernoulli feedback and uses that to derive the �rst and second moments of queue length.Disney [Disney 1981] considered issues relating the distribution of sojourn time in a Bernoullifeedback system and in an M/G/1 system without feedback. His results show that if the twosystems have identical �rst three moments of total service time then the limiting distributions ofsojourn times of the two systems are not identical. Other results regarding Bernoulli feedback,including delayed feedback, can be found in [Disney, K�onig and Schmidt 1983] and [Disney andKiessler 1987].Queueing structures of this type can model systems in which customers receive service instages. In timeshared scheduling, for example, jobs return to the tail of the queue after eachquantum of service until their total service requirement is satis�ed. In modeling such a systemwe would adjust the feedback probabilities, qi, to match job service requirements.In Section 1 we present equations for the expected response time for Bernoulli feedback, in1



which customers return to the queue with a �xed probability after each service completion, andFixed feedback, in which customers visit the queue a �xed number of times before departure.(The Bernoulli policy implies a geometric distribution for the number of visits to the queue bya customer.) An important motivation for studying these feedback policies is that, for manyqueueing systems with feedback, the Bernoulli policy is much simpler to analyze than the Fixedpolicy. For example, a fork/join queueing system with Bernoulli feedback has an exact analysis[Nelson 1990] whereas such a system with Fixed feedback appears to be intractable. It is thennatural to ask whether knowledge of the response time for the Bernoulli policy can be used toshed light on the response time for the Fixed policy.In Section 2 we present our results comparing these and other feedback policies. For theBernoulli and Fixed policies with equal expected number of visits, one would expect the in-creased randomness of the Bernoulli policy to imply higher expected response times. We show,however, that the relationship between these policies depends strongly on the coe�cient of vari-ation of service time. In particular, for C2x > 1 we show that the Fixed policy leads to higherexpected response times. We provide tight bounds for the ratio of the response times of thesetwo policies. Generalizing these results to other distributions of the number of visits, we showthat the �rst and second moments of the number of visits seem to dominate in determiningthe expected response time. With a �xed mean number of visits to the queue, we show that inalmost all cases the response time is a decreasing (increasing) function of the variance of thenumber of visits when C2x > 1 (C2x < 1).
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1 Analysis of the Models1.1 Bernoulli Feedback PolicyTak�acs [Tak�acs 1963] has derived the queue length distribution and the �rst and second momentsof queue length for the M/G/1 queue with Bernoulli feedback. The mean queue length is givenby: QB(�; q) = �1� q + �1� q 0@�(1 + Cx2) + 2q�1�q2(1� �1�q ) 1A ; (1)where � � �x is the utilization of the queue and x is the expected service time. One can alsoderive the above expression for QB(�; q) by observing that an M/G/1 queue with Bernoullifeedback to the tail of the queue, as studied here, and an M/G/1 queue with Bernoulli feedbackto the head of the queue have identical steady state queue length distributions. Feedback to thehead of the queue implies that a customer who is fed back after receiving service immediatelygoes into service again. This system is, in fact, an M/G/1 system where the service time consistsof a random number n of service intervals. Furthermore, n is geometrically distributed withparameter q, and its squared coe�cient of variation, denoted by C2n, is given by C2n = q. Thesquared coe�cient of variation of the total service time then is C2n + C2xn . Using this expressionin the Pollaczek-Khinchin formula for the expected queue length of an M/G/1 queue directlygives (??).From Little's result [Little 1961] we can use (1) to derive the mean response time, TB(�; q),as: TB(�; q) = x1� q + x1� q 0@�(1 + Cx2) + 2q�1�q2(1� �1�q ) 1A : (2)3



1.2 Fixed Cycling PolicyWe next use the results of [Nelson 1987] to derive a closed-form expression for TF (�;N), theaverage response time in the �xed cycling case, The model analyzed there is the generalizedmodel for M/G/1 with feedback. A job enters the queue as a class 1 customer, and is de�nedto be a class i customer on its ith visit, 1 � i � N . The utilization of the server by jobs of classi is given by �i = �xiQi�1j=1 qj . Let Tj denote the expected time that a job spends in the systemas a customer of class j, if it visits the queue at least j times. The expected response time for ajob is R = NXi=1P [Nv = i]Pij=1 Tj , where P [Nv = i], the probability that a job leaves the systemafter exactly i cycles, is calculated as P [Nv = i] = (1� qi)Qi�1j=1 qj . As shown in [Nelson 1987],the values of Ti, i=1 : : :N can be derived from the following set of linear recurrence relations:Tj = 8>>>>><>>>>>: x1 + NXk=1�k(rk � xk + Tk); j = 1;xj + j�1Xk=1�j�kTk + N�j+1Xk=1 �k+j�1Tk; j > 1: ; (3)where rk � x2k=2xk. For the �xed cycling policy (qi = 0, i < N , qN = 1), with xi = x, andx2i = x2, (??) reduces to Tj = 8>>>>>>><>>>>>>>: x +N�(r� x) + � NXk=1Tk; j = 1;x + �j�1Xk=1Tk + �N�j+1Xk=1 Tk; j > 1; (4)where � � �x and r � x2=2x. We can reduce these to a closed form expression by observing thatTn�j+2 = Tj , 2 � j � N , and therefore that Tj+1 = Tj , 2 � j � N . Also, TF (�;N) =PNk=1 Tk,4



giving the following expression for TF (�;N) :TF (�;N) = Nx+Nx �(1 + C2x)(1 +N�) + 2�(N � 1)2(1 + �)(1�N�) ! : (5)2 ResultsIn this section we compare Bernoulli and Fixed cycling, as well as other feedback policies. Inparticular, we show that C2x, the squared coe�cient of variation of the service time distribution,strongly impacts the relative performance of the various policies.To simplify the notation, we hereafter write TF (�;N) and TB(�; q) as TF and TB respec-tively. In �gure 1 we plot TF and TB as functions of C2x, for di�erent utilizations. In calculatingTB, we set q = 1�1=N so that the expected number of visits by a job to the queue is identical inboth policies. If the service time on each visit is exponentially distributed, the two systems haveidentical mean response times because both are product form networks [Baskett et al. 1975]and the average response time only depends on the average total service requirement. In fact,this conclusion extends from the exponential case to all service time distributions with C2x = 1because the mean response time only depends on the �rst and second moments of service time,as (??) shows. For other service time distributions, the mean response time increases linearlywith C2x for both policies, as is expected from the properties of the M/G/1 queue,Perhaps less obvious is the e�ect of C2x on the relative values of TF and TB, for C2x 6=1. ForC2x< 1 (C2x> 1), for all utilizations 0<N�< 1, TF <TB (TF >TB). To show this we form theratio R(�; C2x) � TF (�;N)TB(�; 1� 1N ) = �(1 + C2x)(1 +N�) + 2(1�N�2)(1 + �)(2� �+ �C2x) (6)5



which is the ratio of two linear expressions in C2x. Since (ax+ b)=(cx+d) (for positive a; b; c; d)is an increasing function of x if, and only if, a=c > b=d, it follows that TF =TB is an increasingfunction of C2x. Figure 2 shows how R(�; C2x) varies with C2x for di�erent utilizations.The behavior of the relative response times as C2x is varied may be explained as follows.When C2x is high, each time a job cycles to the tail of the queue there is a signi�cant probabilitythat some of the jobs ahead of it have large service times. In the Fixed cycling policy all jobsundergo exactly N cycles, whereas, in the Bernoulli feedback policy, the number of cycles has ageometric distribution and a large fraction of the jobs undergo only a few cycles before leavingthe system. Although the average number of cycles is the same as the Fixed cycling policy, thejobs with fewer cycles have a very low response time and this decreases the average responsetime for the Bernoulli policy in comparison to that of Fixed cycling.As �gure 2 shows, with moderate values of C2x, the di�erence between the response timesfor Bernoulli feedback and Fixed cycling is small, but not negligible. As C2x ! 1, the ratioR(�; C2x) remains �nite: limC2x!1R(�; C2x) = 1 +N�1 + � : (7)This value increases with � for N > 1 and approaches 2N=(N + 1) as �! 1=N . It is less than2 for all �nite N. Finally, R(�; C2x) is minimized when C2x ! 0, � ! 1=N and N = 2, and theminimum value is 8=9. Thus, R(�; C2x) satis�es 8=9 � R(�; C2x) � 2:0.We next determine the expected number of cycles a job must make with Bernoulli feedbackto have a response time identical to the Fixed cycling policy with N cycles. In other words, �ndN�, depending onN , such that TB(�; 1� 1N� ) = TF (�;N). Setting TF = TB with q = q� � 1� 1N�6



yields: TF = TB = x1� q� + x1� q� 0@�(1 + Cx2) + 2q��1�q�2(1� �1�q� ) 1Aq� = 2(1� �)(TF � x)� �x(1 + C2x)2TFN�N = 1N � 2TF2�TF + 2x� �x(1� C2x)� ;where TF is given by (??). Again, we have a ratio of two linear expressions in C2x and N�N is anincreasing function of C2x.Figure 3 shows how N�N varies with N� for di�erent values of C2x (note the expanded scaleon the Y-axis). For all values of C2x, N� = N when N� is 0 or 1. This is to be expected sinceat N� = 0 there is no queueing, and at N� = 1 a very small increase in q� would cause avery large increase in response time. For any intermediate value of �, N�N increases with C2x,asymptotically approaching N(1+N�)(N�)2�N�2+1+� as C2x ! 1. Di�erentiating w.r.t. � shows thatthis achieves its maximum at � = (p2 � 1)=N . The maximum possible value of N�N (attainedat C2x !1, N !1) is, thus, 1.2071.For C2x < 1, R(�; C2x) < 1, and hence N�N < 1; in fact N�N decreases as C2x ! 0. Evenat C2x = 0, however, N�N remains very close to 1. This is because, in practical terms, the twosystems have almost identical average response times when C2x < 1.To study how these results generalize to other distributions of Nv, the number of visits perjob to the queue, we considered two example distributions, the Uniform and the Split. These7



are de�ned byUniform(N): P [Nv = k] = ( 1=N; 1� k� N;0; k > N; Split(p,N): P [Nv = k] = 8><>: p; k = 1;1� p; k = N;0; otherwise.The mean response time for both cases can be obtained using (??).We compared the four feedback distributions, keeping the average number of visits the samein all cases. Some of the results are listed in Table 1. In almost all cases, increasing the varianceof the number of visits increases (decreases) the expected response time when C2x<1 (C2x>1).It is tempting to conclude that C2x inuences the expected response time in exactly this way,regardless of the higher moments of Nv. As seen from the table, however, for two distributionsof Nv that have equal mean and variance, the response times are not equal, indicating thatthe response times also depend on the higher moments of Nv. In fact, the table shows a pairof distributions of Nv, viz. Split(0.258,133) and Uniform(197), for which Split has the highervariance of Nv and the higher response time.The mean and variance ofNv nevertheless appear to have a dominant role in determining theresponse times. If this is correct, and the higher moments can essentially be ignored, then ourconclusion that the Bernoulli policy could be used to bound or approximate other distributionsof Nv is strengthened. We showed that the di�erence between TB and TF is reasonably smallfor moderate values of C2x; the di�erence would be smaller for any other distribution of Nvwhich had a variance between the Geometric and the Fixed distributions. For distributionswith higher variance than the Geometric, the accuracy will depend both on the variance of Nvand on C2x.Finally, to study how these observations generalize to somewhat more complex queueingsystems, we used simulation to study the ratio of response times of Fixed to Bernoulli feedback8



with an M=G=K queue, for K > 1. In �gure 4 we plot this ratio for an M=G=8 queue withN = 5 and q = 4=5, for three service time distributions, all with unit mean: deterministic(C2x = 0), exponential (C2x = 1) and hyperexponential (C2x = 5). We used the regenerativemethod for output analysis and halted the simulation when the 95% con�dence intervals wereless than 5% of the simulated mean response times. (Although each simulated response time,when plotted alone, would appear smooth, the curves in �gure 4 are jagged because muchtighter con�dence intervals are needed to obtain smooth ratio curves.) For high utilizations,the �gure clearly shows that Fixed cycling has higher response times than Bernoulli, for C2x = 5.3 ConclusionsWe analyzed and compared models of an M/G/1 queue with Bernoulli and Fixed feedbackpolicies, and showed that the relative performance of the two policies changes as C2x increasesfrom values less than 1 to values greater than 1. We showed the ratio of the two response timesto be bounded between 8=9 and 2, and demonstrated that the two systems show only a smalldi�erence in response times for moderate values of C2x. It appears that Bernoulli feedbackcould be used as an approximation for Fixed feedback under these conditions, considerablysimplifying the analysis of such feedback systems.We studied the dependence of the response time on the distribution of Nv, and showedthat the �rst and second moments of Nv dominate in determining the average response timesin most cases. We showed that increasing N2v while keeping Nv constant causes the expectedresponse time to decrease (increase) when C2x > 1 (C2x < 1). We also showed, however, that thehigher moments of Nv cannot be ignored, and gave one example of a pair of distributions wherethe distribution with the higher value of N2v also had the higher response time (with C2x > 1).9
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