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Abstract

We consider an M/G/1 queue with feedback, in which customers, after receiving service,
either return to the tail of the queue or depart the system, according to some feedback
policy. We derive simple expressions for the expected response time for feedback policies
that include Bernoulli feedback and feeding back a fixed number of times. Our results reveal
some interesting and non-intuitive properties of the behavior of such feedback policies when

the coeflicient of variation of service time 1s varied. One result shows that for the Bernoulli

feedback and fixed feedback policies with equal mean number of visits to the queue, the
expected response time for the Bernoulli policy is smaller than for the fixed policy if the
coefficient of variation of service time is greater than 1. The relationship reverses if the

coefficient of variation is less than 1.



We consider a queueing model consisting of a single server queue having infinite capacity.
We assume that customer arrivals come from a Poisson point source with intensity A. Customer
service times at the queues are independent and identically distributed random variables (r.v.’s).
We let X; be the r.v. denoting the service time of a customer on its i visit, and we denote
the mean, variance and squared coefficient of variation of X; by 7, Ufw and Cgi = U?Q /EZQ,
respectively. After the i service completion, a customer returns to the tail of the queue
with probability ¢; and leaves the system with probability (1 — ¢;), ¢ > 1. Customers in the
queue, both newly arrived and those that are fed back, are served in the order in which they
joined the tail of the queue. The customer response time is defined to be the duration of
time from customer arrival until departure including all intermediate feedbacks. An analysis
of a more general model can be found in [Nelson 1987] and, more recently, in [van den Berg
1990]. Takdcs [Takdcs 1963] also derives the queue length distribution for the M/G/1 queue
with Bernoulli feedback and uses that to derive the first and second moments of queue length.
Disney [Disney 1981] considered issues relating the distribution of sojourn time in a Bernoulli
feedback system and in an M/G/1 system without feedback. His results show that if the two
systems have identical first three moments of total service time then the limiting distributions of
sojourn times of the two systems are not identical. Other results regarding Bernoulli feedback,
including delayed feedback, can be found in [Disney, Kénig and Schmidt 1983] and [Disney and

Kiessler 1987].

Queueing structures of this type can model systems in which customers receive service in
stages. In timeshared scheduling, for example, jobs return to the tail of the queue after each
quantum of service until their total service requirement is satisfied. In modeling such a system

we would adjust the feedback probabilities, ¢;, to match job service requirements.

In Section 1 we present equations for the expected response time for Bernoulli feedback, in



which customers return to the queue with a fixed probability after each service completion, and
Fixed feedback, in which customers visit the queue a fixed number of times before departure.
(The Bernoulli policy implies a geometric distribution for the number of visits to the queue by
a customer.) An important motivation for studying these feedback policies is that, for many
queueing systems with feedback, the Bernoulli policy is much simpler to analyze than the Fixed
policy. For example, a fork/join queueing system with Bernoulli feedback has an exact analysis
[Nelson 1990] whereas such a system with Fixed feedback appears to be intractable. It is then
natural to ask whether knowledge of the response time for the Bernoulli policy can be used to

shed light on the response time for the Fixed policy.

In Section 2 we present our results comparing these and other feedback policies. For the
Bernoulli and Fixed policies with equal expected number of visits, one would expect the in-
creased randomness of the Bernoulli policy to imply higher expected response times. We show,
however, that the relationship between these policies depends strongly on the coefficient of vari-
ation of service time. In particular, for C2 > 1 we show that the Fixed policy leads to higher
expected response times. We provide tight bounds for the ratio of the response times of these
two policies. Generalizing these results to other distributions of the number of visits, we show
that the first and second moments of the number of visits seem to dominate in determining
the expected response time. With a fixed mean number of visits to the queue, we show that in
almost all cases the response time is a decreasing (increasing) function of the variance of the

number of visits when C2 > 1 (C2 < 1).



1 Analysis of the Models

1.1 Bernoulli Feedback Policy

Takéacs [Takacs 1963] has derived the queue length distribution and the first and second moments
of queue length for the M/G/1 queue with Bernoulli feedback. The mean queue length is given

by:
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where p = AT is the utilization of the queue and 7 is the expected service time. One can also
derive the above expression for Qg(p,q) by observing that an M/G/1 queue with Bernoulli
feedback to the tail of the queue, as studied here, and an M/G/1 queue with Bernoulli feedback
to the head of the queue have identical steady state queue length distributions. Feedback to the
head of the queue implies that a customer who is fed back after receiving service immediately
goes into service again. This system is, in fact, an M/G/1 system where the service time consists

of a random number n of service intervals. Furthermore, n is geometrically distributed with

parameter ¢, and its squared coefficient of variation, denoted by C?2, is given by C? = ¢q. The

squared coefficient of variation of the total service time then is €2 + %ﬁ Using this expression
in the Pollaczek-Khinchin formula for the expected queue length of an M/G/1 queue directly

gives (77).

From Little’s result [Little 1961] we can use (1) to derive the mean response time, Ts(p, q),

as:

T T [p(1+C7)+ 3L
Ts(p,q) = + 1.



1.2 Fixed Cycling Policy

We next use the results of [Nelson 1987] to derive a closed-form expression for Tr(p, N), the
average response time in the fixed cycling case, The model analyzed there is the generalized
model for M/G/1 with feedback. A job enters the queue as a class 1 customer, and is defined

to be a class i customer on its i visit, 1 < i < N. The utilization of the server by jobs of class

71—

s given by p; = AT, szll q;. Let T; denote the expected time that a job spends in the system

as a customer of class j, if it visits the queue at least j times. The expected response time for a
N .

jobis R = ZP[NU = 1]y 51 T}, where P[N, = 1], the probability that a job leaves the system
=1

after exactly ¢ cycles, is calculated as P[N, =i] = (1 — ¢) H;;ll ¢;. As shown in [Nelson 1987],

the values of T;, i=1...N can be derived from the following set of linear recurrence relations:

N
Ty + > _pe(re — Tn + Tk), J=1
k:
T; = -1 ! N—j+1 ) (3)
z; + ij—ka + Z Pryj1Tk, J> 1.

where 7, = E/Qﬁ For the fixed cycling policy (¢; = 0, ¢ < N, gy = 1), with T; = 7, and

22 = 22, (77) reduces to

N
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where p = AT and r = P/Qf We can reduce these to a closed form expression by observing that

Th_jy2 =1T1;,2 < j <N, and therefore that T;1; = 15,2 < j < N. Also, Tr(p,N) = Zé\;l Ty,



giving the following expression for Tr(p, N) :

Tr(p,N)= NT+ NT (P(l +C2)(1+ Np) +2p(N — 1)) '

2(14p)(1 = Np)

2 Results

In this section we compare Bernoulli and Fixed cycling, as well as other feedback policies. In
particular, we show that C2, the squared coefficient of variation of the service time distribution,

strongly impacts the relative performance of the various policies.

To simplify the notation, we hereafter write Tx(p, N) and T8(p,q) as Tr and Tp respec-
tively. In figure 1 we plot Tr and Tg as functions of C'2, for different utilizations. In calculating
Tp, weset ¢ = 1—1/N so that the expected number of visits by a job to the queue is identical in
both policies. If the service time on each visit is exponentially distributed, the two systems have
identical mean response times because both are product form networks [Baskett et al. 1975]
and the average response time only depends on the average total service requirement. In fact,
this conclusion extends from the exponential case to all service time distributions with C% =1
because the mean response time only depends on the first and second moments of service time,
as (?7) shows. For other service time distributions, the mean response time increases linearly

with C2 for both policies, as is expected from the properties of the M/G/1 queue,

Perhaps less obvious is the effect of C2 on the relative values of Tg and Ty, for C2#1. For
C2<1(C%>1), for all utilizations 0< Np< 1, Ty < Tg (T >Tg). To show this we form the

ratio

Tr(p,N) _ p(1+C2)(1+ Np)+2(1 - Np?)
Te(p,1- %) (1+p)(2—p+pC2)

R(p,C2) (6)



which is the ratio of two linear expressions in C2. Since (az +b)/(cz + d) (for positive a,b, ¢, d)
is an increasing function of z if, and only if, a/¢ > b/d, it follows that Tr/Tp is an increasing

function of C'2. Figure 2 shows how R(p, (%) varies with C? for different utilizations.

The behavior of the relative response times as C'? is varied may be explained as follows.
When C? is high, each time a job cycles to the tail of the queue there is a significant probability
that some of the jobs ahead of it have large service times. In the Fixed cycling policy all jobs
undergo exactly N cycles, whereas, in the Bernoulli feedback policy, the number of cycles has a
geometric distribution and a large fraction of the jobs undergo only a few cycles before leaving
the system. Although the average number of cycles is the same as the Fixed cycling policy, the
jobs with fewer cycles have a very low response time and this decreases the average response

time for the Bernoulli policy in comparison to that of Fixed cycling.

As figure 2 shows, with moderate values of C2, the difference between the response times
for Bernoulli feedback and Fixed cycling is small, but not negligible. As C'? — oo, the ratio
R(p, C?%) remains finite:

. 1+ Np
| = —— L,
i Rp O = (7)

This value increases with p for N > 1 and approaches 2N/(N + 1) as p — 1/N. It is less than
2 for all finite N. Finally, R(p,C?) is minimized when C2 — 0, p — 1/N and N = 2, and the

minimum value is 8/9. Thus, R(p, C?) satisfies 8/9 < R(p,C2) < 2.0.

We next determine the expected number of cycles a job must make with Bernoulli feedback

to have a response time identical to the Fixed cycling policy with N cycles. In other words, find

N~, depending on N, such that Ts(p, 1—#) = Tr(p,N). Setting Tr = Tp withq = ¢* = —]\}*



yields:

T T p(1+C,2) + 22
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. . . . . . . * .
where T is given by (??). Again, we have a ratio of two linear expressions in C2 and NW is an

increasing function of CZ.

Figure 3 shows how NW* varies with Np for different values of C2 (note the expanded scale

on the Y-axis). For all values of C2, N* = N when Np is 0 or 1. This is to be expected since
at Np = 0 there is no queueing, and at Np = 1 a very small increase in ¢* would cause a

. . . . . * . .
very large increase in response time. For any intermediate value of p, NW increases with C?2,

. . N!1-|-N ) 2 . . .
asymptotically approaching (NP)Q_sz)j_l_l_p as (2 — oo. Differentiating w.r.t. p shows that

this achieves its maximum at p = (v2 — 1)/N. The maximum possible value of &= (attained

at C2 — oo, N — 00) is, thus, 1.2071.

For C2 < 1, R(p,C?% < 1, and hence % < 1; in fact % decreases as C2 — 0. Even

* . . . . .
at C2 = 0, however, NW remains very close to 1. This is because, in practical terms, the two

systems have almost identical average response times when C2 < 1.

To study how these results generalize to other distributions of N,, the number of visits per

job to the queue, we considered two example distributions, the Uniform and the Split. These



are defined by

p, k=1,
Uniform(N): P[N, = k] = { 1{)N’ llgikNS N, Split(p,N): P[N, = k] = 1—p, k=N,
’ ’ 0, otherwise.

The mean response time for both cases can be obtained using (?7).

We compared the four feedback distributions, keeping the average number of visits the same
in all cases. Some of the results are listed in Table 1. In almost all cases, increasing the variance
of the number of visits increases (decreases) the expected response time when C2<1 (C2>1).
It is tempting to conclude that C2 influences the expected response time in exactly this way,
regardless of the higher moments of N,. As seen from the table, however, for two distributions
of N, that have equal mean and variance, the response times are not equal, indicating that
the response times also depend on the higher moments of N,. In fact, the table shows a pair
of distributions of N,, viz. Split(0.258,133) and Uniform(197), for which Split has the higher

variance of N, and the higher response time.

The mean and variance of N, nevertheless appear to have a dominant role in determining the
response times. If this is correct, and the higher moments can essentially be ignored, then our
conclusion that the Bernoulli policy could be used to bound or approximate other distributions
of N, is strengthened. We showed that the difference between Tp and Ty is reasonably small
for moderate values of C'%; the difference would be smaller for any other distribution of N,
which had a variance between the Geometric and the Fixed distributions. For distributions

with higher variance than the Geometric, the accuracy will depend both on the variance of N,

and on C2.

Finally, to study how these observations generalize to somewhat more complex queueing

systems, we used simulation to study the ratio of response times of Fixed to Bernoulli feedback



with an M/G/K queue, for K > 1. In figure 4 we plot this ratio for an M/G/8 queue with
N = 5 and ¢ = 4/5, for three service time distributions, all with unit mean: deterministic
(C% = 0), exponential (C2 = 1) and hyperexponential (C2 = 5). We used the regenerative
method for output analysis and halted the simulation when the 95% confidence intervals were
less than 5% of the simulated mean response times. (Although each simulated response time,
when plotted alone, would appear smooth, the curves in figure 4 are jagged because much

tighter confidence intervals are needed to obtain smooth ratio curves.) For high utilizations,

the figure clearly shows that Fixed cycling has higher response times than Bernoulli, for C2 = 5.

3 Conclusions

We analyzed and compared models of an M/G/1 queue with Bernoulli and Fixed feedback
policies, and showed that the relative performance of the two policies changes as C'? increases
from values less than 1 to values greater than 1. We showed the ratio of the two response times
to be bounded between 8/9 and 2, and demonstrated that the two systems show only a small
difference in response times for moderate values of C'2. Tt appears that Bernoulli feedback
could be used as an approximation for Fixed feedback under these conditions, considerably

simplifying the analysis of such feedback systems.

We studied the dependence of the response time on the distribution of N,, and showed
that the first and second moments of N, dominate in determining the average response times
in most cases. We showed that increasing N2 while keeping N,, constant causes the expected
response time to decrease (increase) when C2 > 1 (C2 < 1). We also showed, however, that the
higher moments of N, cannot be ignored, and gave one example of a pair of distributions where

the distribution with the higher value of N2 also had the higher response time (with C2 > 1).



Some interesting questions arise from this study. How would these comparisons extend to
more complex feedback systems, such as if the M/G/1 queue was replaced by a more complex
network of queues? If the central network satisfied the requirements for product form, for
instance, the Bernoulli feedback model would have a relatively simple exact analysis, and might
be a worthwhile approximation to other feedback policies. Results for higher moments of
response time in the M/G/1 case would also be interesting. Also for the M/G/1 case determining
the nature, in a stochastic ordering sense, of the relationship between the response times with

different distributions of NV, is an interesting problem.
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